Any classifier can be "smoothed out" under Gaussian noise to build a new classifier that is provably robust to $\ell_2$-adversarial perturbations, viz., by averaging its predictions over the noise via randomized smoothing. Under the smoothed classifiers, the fundamental trade-off between accuracy and (adversarial) robustness has been well evidenced in the literature: i.e., increasing the robustness of a classifier for an input can be at the expense of decreased accuracy for some other inputs. In this paper, we propose a simple training method leveraging this trade-off to obtain robust smoothed classifiers, in particular, through a sample-wise control of robustness over the training samples. We make this control feasible by using "accuracy under Gaussian noise" as an easy-to-compute proxy of adversarial robustness for an input. Specifically, we differentiate the training objective depending on this proxy to filter out samples that are unlikely to benefit from the worst-case (adversarial) objective. Our experiments show that the proposed method, despite its simplicity, consistently exhibits improved certified robustness upon state-of-the-art training methods. Somewhat surprisingly, we find these improvements persist even for other notions of robustness, e.g., to various types of common corruptions.
translated by 谷歌翻译
Convolution Neural Networks (CNNs) have been used in various fields and are showing demonstrated excellent performance, especially in Single-Image Super Resolution (SISR). However, recently, CNN-based SISR has numerous parameters and computational costs for obtaining better performance. As one of the methods to make the network efficient, Knowledge Distillation (KD) which optimizes the performance trade-off by adding a loss term to the existing network architecture is currently being studied. KD for SISR is mainly proposed as a feature distillation (FD) to minimize L1-distance loss of feature maps between teacher and student networks, but it does not fully take into account the amount and importance of information that the student can accept. In this paper, we propose a feature-based adaptive contrastive distillation (FACD) method for efficiently training lightweight SISR networks. We show the limitations of the existing feature-distillation (FD) with L1-distance loss, and propose a feature-based contrastive loss that maximizes the mutual information between the feature maps of the teacher and student networks. The experimental results show that the proposed FACD improves not only the PSNR performance of the entire benchmark datasets and scales but also the subjective image quality compared to the conventional FD approach.
translated by 谷歌翻译
Image super-resolution is a common task on mobile and IoT devices, where one often needs to upscale and enhance low-resolution images and video frames. While numerous solutions have been proposed for this problem in the past, they are usually not compatible with low-power mobile NPUs having many computational and memory constraints. In this Mobile AI challenge, we address this problem and propose the participants to design an efficient quantized image super-resolution solution that can demonstrate a real-time performance on mobile NPUs. The participants were provided with the DIV2K dataset and trained INT8 models to do a high-quality 3X image upscaling. The runtime of all models was evaluated on the Synaptics VS680 Smart Home board with a dedicated edge NPU capable of accelerating quantized neural networks. All proposed solutions are fully compatible with the above NPU, demonstrating an up to 60 FPS rate when reconstructing Full HD resolution images. A detailed description of all models developed in the challenge is provided in this paper.
translated by 谷歌翻译
测试时间适应(TTA)是一个新兴范式,可解决培训和测试阶段之间的分布变化,而无需其他数据采集或标签成本;仅使用未标记的测试数据流进行连续模型适应。以前的TTA方案假设测试样本是独立的,并且分布相同(i.i.d.),即使它们在应用程序方案中通常在时间上相关(non-i.i.d。),例如自动驾驶。我们发现,在这种情况下,大多数现有的TTA方法急剧失败。由此激励,我们提出了一种新的测试时间适应方案,该方案对非I.I.D具有强大的态度。测试数据流。我们的新颖性主要是两倍:(a)纠正分布样本的归一化的实例感知批归归量表(IABN),以及(b)模拟I.I.D.的预测均衡储层采样(PBRS)。来自非i.i.d的数据流。以班级平衡的方式流式传输。我们对各种数据集的评估,包括现实世界非i.i.d。流,表明所提出的强大TTA不仅优于非i.i.d的最先进的TTA算法。设置,但也可以实现与I.I.D.下的这些算法相当的性能。假设。
translated by 谷歌翻译
深度学习模型越来越多地部署在现实世界中。这些模型通常在服务器端部署,并在信息丰富的表示中接收用户数据,以求解特定任务,例如图像分类。由于图像可以包含敏感信息,而用户可能不愿意共享,因此隐私保护变得越来越重要。对抗表示学习(ARL)是一种训练在客户端运行并混淆图像的编码器的常见方法。假定可以安全地将混淆的图像安全地传输并用于服务器上的任务,而无需隐私问题。但是,在这项工作中,我们发现培训重建攻击者可以成功恢复现有ARL方法的原始图像。为此,我们通过低通滤波引入了一种新颖的ARL方法,从而限制了要在频域中编码的可用信息量。我们的实验结果表明,我们的方法可以承受重建攻击,同时超过了先前有关隐私 - 实用性权衡的最先进方法。我们进一步进行用户研究,以定性评估我们对重建攻击的防御。
translated by 谷歌翻译
随机平滑是目前是最先进的方法,用于构建来自Neural Networks的可认真稳健的分类器,以防止$ \ ell_2 $ - vitersarial扰动。在范例下,分类器的稳健性与预测置信度对齐,即,对平滑分类器的较高的置信性意味着更好的鲁棒性。这使我们能够在校准平滑分类器的信仰方面重新思考准确性和鲁棒性之间的基本权衡。在本文中,我们提出了一种简单的训练方案,Coined Spiremix,通过自我混合来控制平滑分类器的鲁棒性:它沿着每个输入对逆势扰动方向进行样品的凸起组合。该提出的程序有效地识别过度自信,在平滑分类器的情况下,作为有限的稳健性的原因,并提供了一种直观的方法来自适应地在这些样本之间设置新的决策边界,以实现更好的鲁棒性。我们的实验结果表明,与现有的最先进的强大培训方法相比,该方法可以显着提高平滑分类器的认证$ \ ell_2 $ -toSpustness。
translated by 谷歌翻译
半监督学习(SSL)是规避建立高性能模型的昂贵标签成本的最有前途的范例之一。大多数现有的SSL方法常规假定标记和未标记的数据是从相同(类)分布中绘制的。但是,在实践中,未标记的数据可能包括课外样本;那些不能从标签数据中的封闭类中的单热编码标签,即未标记的数据是开放设置。在本文中,我们介绍了Opencos,这是一种基于最新的自我监督视觉表示学习框架来处理这种现实的半监督学习方案。具体而言,我们首先观察到,可以通过自我监督的对比度学习有效地识别开放式未标记数据集中的类外样本。然后,Opencos利用此信息来克服现有的最新半监督方法中的故障模式,通过利用一式旋转伪标签和软标签来为已识别的识别和外部未标记的标签数据分别。我们广泛的实验结果表明了Opencos的有效性,可以修复最新的半监督方法,适合涉及开放式无标记数据的各种情况。
translated by 谷歌翻译
Novelty detection, i.e., identifying whether a given sample is drawn from outside the training distribution, is essential for reliable machine learning. To this end, there have been many attempts at learning a representation well-suited for novelty detection and designing a score based on such representation. In this paper, we propose a simple, yet effective method named contrasting shifted instances (CSI), inspired by the recent success on contrastive learning of visual representations. Specifically, in addition to contrasting a given sample with other instances as in conventional contrastive learning methods, our training scheme contrasts the sample with distributionally-shifted augmentations of itself. Based on this, we propose a new detection score that is specific to the proposed training scheme. Our experiments demonstrate the superiority of our method under various novelty detection scenarios, including unlabeled one-class, unlabeled multi-class and labeled multi-class settings, with various image benchmark datasets. Code and pre-trained models are available at https://github.com/alinlab/CSI.
translated by 谷歌翻译
Crowdsourcing has emerged as an effective platform to label a large volume of data in a cost- and time-efficient manner. Most previous works have focused on designing an efficient algorithm to recover only the ground-truth labels of the data. In this paper, we consider multi-choice crowdsourced labeling with the goal of recovering not only the ground truth but also the most confusing answer and the confusion probability. The most confusing answer provides useful information about the task by revealing the most plausible answer other than the ground truth and how plausible it is. To theoretically analyze such scenarios, we propose a model where there are top-two plausible answers for each task, distinguished from the rest of choices. Task difficulty is quantified by the confusion probability between the top two, and worker reliability is quantified by the probability of giving an answer among the top two. Under this model, we propose a two-stage inference algorithm to infer the top-two answers as well as the confusion probability. We show that our algorithm achieves the minimax optimal convergence rate. We conduct both synthetic and real-data experiments and demonstrate that our algorithm outperforms other recent algorithms. We also show the applicability of our algorithms in inferring the difficulty of tasks and training neural networks with the soft labels composed of the top-two most plausible classes.
translated by 谷歌翻译
Nowadays, fake news easily propagates through online social networks and becomes a grand threat to individuals and society. Assessing the authenticity of news is challenging due to its elaborately fabricated contents, making it difficult to obtain large-scale annotations for fake news data. Due to such data scarcity issues, detecting fake news tends to fail and overfit in the supervised setting. Recently, graph neural networks (GNNs) have been adopted to leverage the richer relational information among both labeled and unlabeled instances. Despite their promising results, they are inherently focused on pairwise relations between news, which can limit the expressive power for capturing fake news that spreads in a group-level. For example, detecting fake news can be more effective when we better understand relations between news pieces shared among susceptible users. To address those issues, we propose to leverage a hypergraph to represent group-wise interaction among news, while focusing on important news relations with its dual-level attention mechanism. Experiments based on two benchmark datasets show that our approach yields remarkable performance and maintains the high performance even with a small subset of labeled news data.
translated by 谷歌翻译